Упругое рассеяние
Центр масс всегда движется равномерно и прямолинейно. Действительно, законы движения частиц в произвольной системе отсчета имеют вид:
Следовательно, все, что может делать центр масс системы - это двигаться с постоянной скоростью. Вводя вектор расстояния между частицами следующим образом:
Подставляя полученные соотношения в выражение для энергии, находим:
где Когда масса одной из частиц намного больше другой (например, электрон и атом), приведенная масса приблизительно равна массе легкой частицы; если же массы частиц равны, приведенная масса равна половине массы частицы. Таким образом, задача о движении двух частиц, энергия взаимодействия которых зависит только от расстояния между ними, может быть сведена к задаче о движении одной частицы с приведенной массой в поле внешних сил. Такое представление удобно, однако описание в системе центра масс, положение которого меняется со временем, может вызвать некоторые трудности в интерпретации результатов. Часто после получения решения в системе центра масс переводят ответ в неподвижную систему отсчета - так называемую лабораторную систему координат. Кулоновское рассеяние частиц Перейдем непосредственно к рассмотрению рассеяния частиц. Как было показано выше, такую задачу можно свести к задаче о рассеянии на центре одной частицы массой |