Математическая постановка задачи.
Сформулируем математическую постановку задачи. Пусть имеется n инвестиционных проектов, m экспертов и m параметров, по которым оценены проекты. Пронумеруем все проекты диверсификации, пусть i - порядковый номер направления ( i =1…n). Считается известными элементы матрицы Аji, где элемент матрицы aji обозначает значение параметра j (j=1…m) для инвестиционного параметра с номером i (i =1…n). Каждый эксперт формирует вектор Pj=( Pj1, Pj2, ., Pjn), j =1…m, где Pji- порядковый номер проекта диверсификации, который по мнению эксперта, оценивающего параметр с номером j, занимает i-ое место. В каждом таком векторе первое место занимает наиболее привлекательное, с точки зрения рассматриваемого параметра, проект диверсификации и далее по убыванию. Затем каждому вектору Pj поставим в соответствие вектор πj = (πj1, πj2, .,πjn), сформированный по правилу: координата πji - число проектов, которые согласно j-му частному критерию являются более предпочтительными, чем проект, имеющий порядковый номер i. Теперь необходимо построить матрицу потерь R с элементами rkl, где k,l = (1…m). Для этого рассматривается такой вектор π = (π1, π2, ., πk, ., πn), в котором k-ый проект стоит на l-ом месте, математическая запись координат этого вектора выглядит так πk (l)= l-1. Тогда элементы матрицы потерь считаются следующим образом:
Элементы матрицы R - rkl обозначают, то сколько теряется, если мы считаем, что направление с номером k находится не на месте l, а на том , которое ему присвоил эксперт упорядочивая проекты согласно своему критерию. Таким образом, мы свели задачу к задаче о назначениях. Математически запишем ее так:
Причем хkl=1, если к-ая альтернатива назначена на l-ое место, и хkl=0 в противном случае. В результате решения задачи о назначениях будет получена матрица X*={x*kl}, по которой будет восстановлен вектор Р*= (p*1, …p*n), координаты которого, наиболее точно будут отражать мнения экспертов, относительно привлекательности проектов. Чтобы восстановить вектор Р*, будем анализировать матрицу X* по строкам: если x*kl=1, то в векторе P* будем считать p*l = k. Применим метод парных сравнений, с его помощью рассчитываем весовые коэффициенты, которые и будут соответствовать части средств, вкладываемых в каждое из направлений. Будем формировать матрицу парных сравнений L с элементами аkl, где k,l=(1…n). Элементы матрицы L формируются таким образом:
Затем считаем сумму элементов каждой строки
и величину:
Далее находим вектор Z = (z1, …, zn), где координаты zk, соответствуют долям средств, вкладываемых в проект диверсификации с номером k:
В итоге построена модель, в которой при распределении средств между проектами диверсификации учитывается все мнение узких специалистов, при этом учитывается их равнозначность. Так же возможно применение этой модели при поиске наиболее привлекательного проекта для диверсификации, в этом случае координаты вектора Z будут являться весовыми коэффициентами привлекательности. Диверсификация производства энергетического предприятия. Когенерация Когенерация - распределение затрат, связанных с комбинированным производством тепла и электроэнергии, по таким категориям, как продукция централизованного теплоснабжения, промышленный пар и электрическая энергия. Когенерация и централизованное теплоснабжение используются во многих странах мира. Доля когенерации в общем объеме производства энергии составляет от 10 до 50 процентов, а доля централизованного теплоснабжения в общем объеме производства тепла составляет от менее 5 процентов до более 60 процентов. Во многих странах имеется потенциал для повышения совокупной энергоэффективности за счет более высокой доли когенерации и централизованного теплоснабжения, а также за счет сокращения потерь энергии при модернизации систем централизованного теплоснабжения. Проблема распределения затрат теплоэлектроцентрали аналогична распределению затрат любой производственной единицы, которая производит два или более видов продукции за счет одного и того же вводимого фактора производства, как это происходит, например, на нефтеперерабатывающем предприятии. Рынок определяет цену каждого вида продукции, но не особые различия в производственных затратах. |