Линейное программирование
В настоящее время линейное программирование является одним из наиболее употребительных аппаратов математической теории оптимального принятия решений, в том числе и в финансовой математике. Для решения задач линейного программирования разработано сложное программное обеспечение, дающее возможность эффективно и надежно решать практические задачи больших объемов. Эти программы и системы снабжены развитыми системами подготовки исходных данных, средствами их анализа и представления полученных результатов. Владение аппаратом линейного программирования необходимо каждому специалисту в области прикладной математики. Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи: · рационального использования сырья и материалов; · задачи оптимального раскроя; · оптимизации производственной программы предприятий; · оптимального размещения и концентрации производства; · составления оптимального плана перевозок, работы транспорта; · управления производственными запасами; · и многие другие, принадлежащие сфере оптимального планирования. Наиболее разработанным и широко применяемым разделом математического программирования является линейное программирование, целью которого служит отыскивание оптимума (max, min) заданной линейной функции при наличии ограничений в виде линейных уравнений или неравенств в этом и заключается актуальность данной работы. Целью данного РГЗ является выполнение расчетно-графической работы, закрепление знаний и навыков, необходимых для математического моделирования социально-экономических процессов. А также, приобретение навыков работы с программными пакетами «Линейное программирование» и «Дискретное программирование». Теоретическая часть
|