Линейные регрессионные модели с гомоскедастичными и гетероскедастичными остатками
Эконометрика - одна из базовых дисциплин экономического образования во всем мире. Однако до недавнего времени она не была признана в СССР и России. Это было связано с тем, что из трех основных составляющих эконометрики - экономической теории, экономической статистики и математики - две первые были представлены в нашей стране неудовлетворительно. Но теперь ситуация изменилась коренным образом. Существуют различные варианты определения эконометрики: ) расширенные, при которых к эконометрике относят все, что связано с измерениями в экономике; 2) узко инструментально ориентированные, при которых понимают определенный набор математико-статистических средств, позволяющих верифицировать модельные соотношения между анализируемыми экономическими показателями. Эконометрика - это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией. В эконометрике, как дисциплине на стыке экономики (включая менеджмент) и статистического анализа выделяют три вида научной и прикладной деятельности - разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных; разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики; применение эконометрических методов и моделей для статистического анализа конкретных экономических данных. Линейные регрессионные модели с гомоскедастичными и гетероскедастичными остатками При оценке параметров уравнения регрессии применяется метод наименьших квадратов (МНК). При этом делаются определенные предпосылки относительно случайной составляющей . В модели
случайная составляющая представляет собой ненаблюдаемую величину. После того как произведена оценка параметров модели, рассчитывая разности фактических и теоретических значений результативного признака , можно определить оценки случайной составляющей . Поскольку они не являются реальными случайными остатками, их можно считать некоторой выборочной реализацией неизвестного остатка заданного уравнения, т.е. . При изменении спецификации модели, добавлении в нее новых наблюдений выборочные оценки остатков могут меняться. Поэтому в задачу регрессионного анализа входит не только построение самой модели, но и исследование случайных отклонений , т.е. остаточных величин. При использовании критериев Фишера и Стьюдента делаются предположения относительно поведения остатков - остатки представляют собой независимые случайные величины и их среднее значение равно 0; они имеют одинаковую (постоянную) дисперсию и подчиняются нормальному распределению. Статистические проверки параметров регрессии, показателей корреляции основаны на непроверяемых предпосылках распределения случайной составляющей . Они носят лишь предварительный характер. После построения уравнения регрессии проводится проверка наличия у оценок (случайных остатков) тех свойств, которые предполагались. Связано это с тем, что оценки параметров регрессии должны отвечать определенным критериям. Они должны быть несмещенными, состоятельными и эффективными. Эти свойства оценок, полученных по МНК, имеют чрезвычайно важное практическое значение в использовании результатов регрессии и корреляции. Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям. Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки. Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице. |