Кадровый потенциал

Кадровый потенциал - совокупность способностей всех людей, которые заняты в данной организации и решают определенные задачи ...

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными остатками

Абсолютное значение 1% прир. = абс. прирост к предыд. году

темп прироста к предыд. году

1. Средний уровень ряда:

2. Средний абсолютный прирост:

3. Средний темп роста:

гомоскедастичный остаток регрессия уравнение

Заключение

Эконометрический метод складывался в преодолении трудностей, искажающих результаты применения классических статистических методов, таких как ложная корреляция, асимметричность связей, мультиколлинеарность связей, автокорреляции, ложной корреляции, наличия лагов и, наконец, эффект гетероскедастичности.

Как сказано выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа, здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Гомоскедастичность - это означает, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции.

Перейти на страницу: 1 2 3 4 5 6