Кадровый потенциал

Кадровый потенциал - совокупность способностей всех людей, которые заняты в данной организации и решают определенные задачи ...

Транспортная задача

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых ui + vi > cij

Выбираем максимальную оценку свободной клетки (1;4): 0

Для этого в перспективную клетку (1;4) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

1

2

3

4

Запасы

1

1[90]

9

4[10][-]

0[+]

100

2

4

3[60][-]

3[20][+]

0

80

3

2

1

2[50]

0

50

4

6

2[40][+]

9

0[10][-]

50

Потребности

90

100

80

10

Цикл приведен в таблице (1,4; 1,3; 2,3; 2,2; 4,2; 4,4; ).

Из грузов хij стоящих в минусовых клетках, выбираем наименьшее, т.е. у = min (4, 4) = 10. Прибавляем 10 к объемам грузов, стоящих в плюсовых клетках и вычитаем 10 из Хij, стоящих в минусовых клетках. В результате получим новый опорный план.

1

2

3

4

Запасы

1

1[90]

9

4[0]

0[10]

100

2

4

3[50]

3[30]

0

80

3

2

1

2[50]

0

50

4

6

2[50]

9

0

50

Потребности

90

100

80

10

Проверим оптимальность опорного плана. Найдем предварительные потенциалы ui, vi. по занятым клеткам таблицы, в которых ui + vi = cij, полагая, что u1 = 0.

v1=1

v2=4

v3=4

v4=0

u1=0

1[90]

9

4[0]

0[10]

u2=-1

4

3[50]

3[30]

0

u3=-2

2

1

2[50]

0

u4=-2

6

2[50]

9

0

Перейти на страницу: 1 2 3 4 5 6 7 8