Кадровый потенциал

Кадровый потенциал - совокупность способностей всех людей, которые заняты в данной организации и решают определенные задачи ...

Общие сведения о регрессионном анализе и методе наименьших квадратов

α, если Fнабл > Fкр. Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.

Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотезы Н0: βj = 0, где j = 1, 2,…, k, используют t-критерий и вычисляют tнабл(bj) = bj / bj. По таблице t-распределения для заданного α и v = п - k - 1 находят tкр.

Гипотеза H0 отвергается с вероятностью α, если tнабл > tкр. Из этого следует, что соответствующий коэффициент регрессии βj значим, т.е. βj ≠ 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. Тогда реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначительных переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.

Существуют и другие алгоритмы пошагового регрессионного анализа, например с последовательным включением факторов.

Наряду с точечными оценками bj генеральных коэффициентов регрессии βj регрессионный анализ позволяет получать и интервальные оценки последних с доверительной вероятностью γ.

Интервальная оценка с доверительной вероятностью γ для параметра βj имеет вид

(17)

где tα находят по таблице t-распределения при вероятности α = 1 - γ и числе степеней свободы v = п - k - 1.

Интервальная оценка для уравнения регрессии в точке, определяемой вектором-столбцом начальных условий X0 = (1, x, x,…, x)T записывается в виде

(18)

Интервал предсказания n+1 с доверительной вероятностью у определяется как

(19)

где tα определяется по таблице t-распределения при α = 1 - γ и числе степеней свободы v = п - k - 1.

По мере удаления вектора начальных условий х

0 от вектора средних ширина доверительного интервала при заданном значении γ будет увеличиваться (рис. 2), где = (1, ).

Рис. 3. Точечная и интервальная оценки уравнения регрессии

Практическая часть

Перейти на страницу: 1 2 3