Модель авторегрессии - проинтегрированного скользящего среднего
На этом этапе (который обычно называют идентификацией порядка модели) вы также должны решить, как много параметров авторегрессии ( Следующий, после идентификации, шаг (оценивание) состоит в оценивании параметров модели (для чего используются процедуры минимизации функции потерь). Полученные оценки параметров используются на последнем этапе (прогноз) для того, чтобы вычислить новые значения ряда и построить доверительный интервал для прогноза. Процесс оценивания проводится по преобразованным данным (подвергнутым применению разностного оператора). До построения прогноза нужно выполнить обратную операцию (интегрировать данные). Таким образом, прогноз методологии будет сравниваться с соответствующими исходными данными. На интегрирование данных указывает буква П в общем названии модели (АРПСС - Авторегрессионное Проинтегрированное Скользящее Среднее). Дополнительно модели АРПСС могут содержать константу, интерпретация которой зависит от подгоняемой модели. Именно, если в модели нет параметров авторегрессии, то константа Конечно, до того, как начать оценивание, вам необходимо решить, какой тип модели будет подбираться к данным, и какое количество параметров присутствует в модели, иными словами, нужно идентифицировать модель АРПСС. Основными инструментами идентификации порядка модели являются графики, автокорреляционная функция (АКФ), частная автокорреляционная функция (ЧАКФ). Это решение не является простым и требуется основательно поэкспериментировать с альтернативными моделями. Тем не менее, большинство встречающихся на практике временных рядов можно с достаточной степенью точности аппроксимировать одной из 5 основных моделей, которые можно идентифицировать по виду автокорреляционной (АКФ) и частной автокорреляционной функции (ЧАКФ). Ниже дается список этих моделей: а) один параметр ( б) два параметра авторегрессии ( в) один параметр скользящего среднего ( д) два параметра скользящего среднего ( е) один параметр авторегрессии ( Мультипликативная сезонная АРПСС представляет естественное развитие и обобщение обычной модели АРПСС на ряды, в которых имеется периодическая сезонная компонента. В дополнении к несезонным параметрам, в модель вводятся сезонные параметры для определенного лага (устанавливаемого на этапе идентификации порядка модели). Аналогично параметрам простой модели АРПСС, эти параметры называются: сезонная авторегрессия ( |