Множественная регрессия
В столбце Beta показаны стандартизованные коэффициенты регрессии, а в столбце В - нестандартизованные. Стандартизированные коэффициенты Beta позволяют провести ранжирование предикторов по степени их влияния на отклик. Из таблицы следует, что предикторы можно проранжировать по степени влияния на отклик в следующем порядке:X1, X5, X4, X2, X3 В этой таблице немаловажное значение имеет p-level - показатель, находящийся в убывающей зависимости от надежности результата. Более высокий p-level соответствует более низкому уровню доверия к найденной в выборке зависимости между переменными. P-level не должен превышать 0,05. В нашем случае удовлетворяют условию регрессоры Х1 и Х5. Метод можно улучшить, исключив незначимые факторы. Искомая модель имеет вид: =608,02662+0,63617X1+249,35156 X2-262,50298X3+5,39506X4-40,59804X5 Статистика Дарбина - Уотсона:
Статистика Дарбина-Уотсона имеет небольшое значение (1,950929) при умеренной сериальной корреляции (0,007937). Это свидетельствует о некоторой зависимости наблюдений, следовательно, можно говорить о недостаточной устойчивости некоторых значений коэффициентов регрессии, а значит о невысокой адекватности модели изучаемому процессу. Оценка качества Так как фактическое значение критерия Фишера больше, чем табличное, то необходимо сделать вывод о значимости модели уравнения регрессии, исследуемая зависимая переменная хорошо описывается переменными X1 и Х5. Из приведенных результатов анализа следует, что зависимость между откликом и предикторами высокая (0,7<R=0,82291525<0,9). Свободный член является статистически значим (p=0,03057<0,05). Диагностика соблюдения условия РА-МНК Проверим соблюдение основных предположений РА <2.1> - <5.2>. Соблюдение предположений <1.1> - <1.4> экспериментатор старается обеспечить при организации эксперимента. <2.1> В случае с множественной регрессией модель избыточна, т.к. для регрессоров Х2, ХЗ, Х4 р-level превышает уровень значимости = 0,05, не превышает только для Х1, Х5. <2.2> Специальных признаков нарушения <2.2> не существует. Косвенными признаками могут быть признаки нарушения предположения <3.1>, а именно, значимые коэффициенты парной корреляции. <3.1> Нарушение этого предположения трактуется как явление мультиколлинеарности. Наиболее часто мультиколлинеарность обнаруживается по коэффициентам парной корреляции ХУ матрицы R. статистический регрессионный выборка отклонение
|