Математическая постановка задачи.
Теперь сформулируем математическую постановку задачи. Предположим, что имеется s экспертов и n инвестиционных проектов диверсификации, оцененных по m параметрам. Считается известными элементы матрицы Аji, где элемент матрицы aji обозначает значение параметра j (j=1…m) для инвестиционного параметра с номером i (i =1…n). Каждый эксперт формирует множества Ωs, где s=(1…s), состоящих из множества векторов x=(x1…xn), где координаты вектора xi обозначают долю средств, вкладываемых в инвестиционный проект под номером i. Множество Ωs, каждый эксперт формирует с помощью наложений ограничений вида:
Рассмотрим случай, когда Ωs не пересекаются. Тогда результирующим, наиболее точно отражающим мнение каждого эксперта будем считать вариант x*, сумма расстояний от которого до каждого из множеств Ωs будет наименьшей. Математически это выглядит так:
Считаем, что расстояние от точки x до множества Ωs определяется, как наименьшее расстояние от точки x=(x1…xn), до точки y=(ys1…ysn) из множества Ωs, определяемое по формуле:
Таким образом, систему (1.2) можно переписать в следующем виде:
Теперь обратимся к случаю, когда Ωs имеют пересечения. Тогда лучшее распределение средств между инвестиционными проектами будем искать решая задачу максимизации или минимизации (в зависимости от выбранного параметра) одного из наиболее важного параметра, при выборе проекта на множестве . Например, это может быть задачи минимизации риска или задача максимизации чистого дисконтированного дохода. Математически это выглядит так:
Построение модели, в которой каждый эксперт придерживается четко определенного мнения о необходимости поддержки каждого проекта Требуется распределить инвестиционные средства между предложенными проектами диверсификации. Для этого приглашаются эксперты в узких областях. Таким образом, эксперт может оценивать каждый проект, пользуясь лишь одним критерием, в котором он является специалистом. Все эксперты считаются одинаково компетентными, то есть нельзя пренебрегать мнением одного из них, считая его менее важным. Необходимо выбрать такое распределение средств, которое наиболее точно удовлетворит предпочтение каждого эксперта. |