Расчет коэффициента линейной парной корреляции по заданным значениям рядов
Рассчитывали по формулам |
F |
G |
H |
I |
J |
K |
L |
2 |
Xi |
(Xi-X!) |
(Xi-X!)^2 |
Yi |
(Yi-Y!) |
(Yi-Y!)^2 |
(Xi-X!)*(Yi-Y!) |
3 |
21 |
=F3-$F$23 |
=G3^2 |
21 |
=I3-$I$23 |
=J3^2 |
=G3*J3 |
4 |
23 |
=F4-$F$23 |
=G4^2 |
27 |
=I4-$I$23 |
=J4^2 |
=G4*J4 |
5 |
20 |
=F5-$F$23 |
=G5^2 |
28 |
=I5-$I$23 |
=J5^2 |
=G5*J5 |
6 |
24 |
=F6-$F$23 |
=G6^2 |
35 |
=I6-$I$23 |
=J6^2 |
=G6*J6 |
7 |
22 |
=F7-$F$23 |
=G7^2 |
41 |
=I7-$I$23 |
=J7^2 |
=G7*J7 |
8 |
24 |
=F8-$F$23 |
=G8^2 |
46 |
=I8-$I$23 |
=J8^2 |
=G8*J8 |
9 |
27 |
=F9-$F$23 |
=G9^2 |
52 |
=I9-$I$23 |
=J9^2 |
=G9*J9 |
10 |
25 |
=F10-$F$23 |
=G10^2 |
56 |
=I10-$I$23 |
=J10^2 |
=G10*J10 |
011 |
27 |
=F11-$F$23 |
=G11^2 |
59 |
=I11-$I$23 |
=J11^2 |
=G11*J11 |
12 |
27 |
=F12-$F$23 |
=G12^2 |
63 |
=I12-$I$23 |
=J12^2 |
=G12*J12 |
13 |
32 |
=F13-$F$23 |
=G13^2 |
72 |
=I13-$I$23 |
=J13^2 |
=G13*J13 |
14 |
32 |
=F14-$F$23 |
=G14^2 |
76 |
=I14-$I$23 |
=J14^2 |
=G14*J14 |
15 |
34 |
=F15-$F$23 |
=G15^2 |
82 |
=I15-$I$23 |
=J15^2 |
=G15*J15 |
16 |
33 |
=F16-$F$23 |
=G16^2 |
87 |
=I16-$I$23 |
=J16^2 |
=G16*J16 |
17 |
32 |
=F17-$F$23 |
=G17^2 |
88 |
=I17-$I$23 |
=J17^2 |
=G17*J17 |
18 |
35 |
=F18-$F$23 |
=G18^2 |
95 |
=I18-$I$23 |
=J18^2 |
=G18*J18 |
19 |
34 |
=F19-$F$23 |
=G19^2 |
100 |
=I19-$I$23 |
=J19^2 |
=G19*J19 |
20 |
39 |
=F20-$F$23 |
=G20^2 |
106 |
=I20-$I$23 |
=J20^2 |
=G20*J20 |
21 |
36 |
=F21-$F$23 |
=G21^2 |
108 |
=I21-$I$23 |
=J21^2 |
=G21*J21 |
22 |
39 |
=F22-$F$23 |
=G22^2 |
113 |
=I22-$I$23 |
=J22^2 |
=G22*J22 |
23 |
=СРЗНАЧ (F3:F22) | |
=СУММ (H3:H22) |
=СРЗНАЧ (I3:I22) | |
=СУММ (K3:K22) |
=СУММ (L3:L22) |
Перейти на страницу: 1 2 3 4
|