Эффективность итерационных методов решения
Эффективность итерационных методов решения зависит главным образом от моделирования. Прекрасная настройка характеристик никогда не будет сохранять в равновесии плохой выбор структуры окрестности или реальной функции. Наоборот, эффективное моделирование должно привести к устойчивым методам, которые малочувствительны к настройке различных параметров. В этом разделе мы дадим некоторые рекомендации по проектированию эффективных методов решения. Эффективные вычисления. На каждом шаге итерационного процесса решения должны быть оценены многими способами. Важно выполнять эти вычисления эффективным способом.
Следовательно,
Проверяя правильность нашего метода, мы используем некоторые тестовые функции которые часто используются в литературе с их помощью можно определить эффективность данного метода. Характерные функции, которые используются следующие: Приводим к: .g01
.g04 Функцию
Приводим к:
.g08 Функцию
Приводим к:
.g12 Раскрываем:
И приводим к:
где и Таблица 1:Сравнивая результаты для тестовых функций. Наши приближения наз. САЕР(Cultural Algorith with Evolutionary Programming).
Также ещё проводились исследование метода Пусть нам дана функция
Проведём вычисления и сравним их с нулём
2
3
Таблица 2:Результаты для тестовых фунций
Интенсификация поиска. Чтобы углубить поиск в перспективных областях, мы должны возвратиться к одному из уже найденных лучшему решению. Тогда размер списка запретов может быть просто сокращен для «малого» числа итераций. В некоторых случаях могут быть использованы более сложные методики. Некоторые проблемы оптимизации могут быть разделены на подпроблемы. Решение этих подпроблем оптимально и объединение частных решений приводит к оптимальному решению. Трудность такой стратегии, очевидно, состоит в нахождении хорошего разделения. Как упомянуто ранее, для основы, связанной с вычислительным временем, быстрые эвристики и окрестность рационального размера используется на каждом шаге TS. Методы по углублению поиска используют или более продуманные эвристики или методы строгого сглаживания или расширенную окрестность. Также возможно выполнить интенсификацию, основанную на долгосрочной памяти. Каждое решение или перемещение может быть характеризовано набором компонентов. Компоненты «хороших» перемещений или «хороших» решений запоминаются. В течении фазы интенсификации решения и перемещения оцениваются принятым во внимание количеством «хороших» компонентов. Эта долгосрочная память может быть рассмотрена, как своего рода процесс обучения. |