Основные идеи алгоритма культурного обмена
Культурные алгоритмы используют базовый набор знаний, источников, связанных друг к знаниям наблюдается в различных животных. Эти знания источников, то в сочетании с прямым решением отдельных агентов в решении проблем оптимизации Этот алгоритм, основанный на аналогии со стоимостью маргинальных теорем для руководства интеграции этих различных источников знаний для прямого агента населения. Применяется алгоритм, чтобы найти оптимальный в динамичной среде в составе мобильных ресурсов конусами. Это свидетельствует о том, что некоторые этапы решения проблемы возникают вместе со связанными с ролью каждого решения в ходе процесса. Знания об эволюционном информация не использовал эффективно в области генетического алгоритма. В то время как традиционные культурные алгоритмы, имеющих двойное наследование структуры сходятся медленно, потому что эволюционный программирование выбирается для населения, модели и оператора мутации только будет принят населения в пространстве. Роман культурных алгоритмов, основанный на генетических алгоритмов предлагается четыре вида знания воды. Результаты моделирования по базового одного пика оптимизации функций свидетельствуют о том, что эффективность этого метода гораздо лучше, чем традиционные культурные алгоритмы специально для "простой функции". С целью многолетних пиков оптимизации проблему, нескольких окон культурного алгоритм и нескольких окон культурного алгоритм, основанный на генетический алгоритм вводятся. Результаты моделирования по базового многолетних пиков функция указывает на то, что последний является более эффективным средством оптимизации производительности, чем первого. Ежедневно поколения графика гидротермальных систем энергоснабжения играет важную роль в функционировании энергосистемы для экономики и безопасности, которая является крупномасштабных динамичный нелинейной оптимизации сдерживается проблемой. Очень трудно решить с помощью традиционных методов оптимизации. В настоящем документе предлагается новый культурный алгоритм для решения ежедневных поколения оптимального планирования гидротермальных систем энергоснабжения. Подход принимает водном транспорте времени задержки связаны между водохранилища во внимание и удобная возможность заниматься сложной гидравлической связью одновременно. Например используется для проверки правильности и эффективности предлагаемых культурных алгоритм, по сравнению с обеих Лагранжа метод и метод генетических алгоритмов. Результаты моделирования показывают, что предлагаемый алгоритм имеет быстрого сближения скорость и точность выше решение. Таким образом, эффективным методом оказывается решить оптимальным ежедневно поколения графика гидротермальной системы. Программисты часто используют, основанной на знаниях эвристические подходы в применении решения проблем программирования. Программа нарезки является одним из средств, используемых для получения таких знаний в области программного обеспечения для поддержки отладка, испытания, техническое обслуживание и понимание программ. Программа нарезки является определение множества всех заявлений в программу, которая прямо или косвенно влияет на значение переменной происшествия. Генетическое программирование на процесс использования эволюционных методов для выявления информации, которая может быть использована для определения местоположения проблемы в программный код. Мы считаем, что в рамках культурного Алгоритм базы, анализ агент тестирования могут быть реализованы с использованием методов нарезания в целях получения более точных метрик программы. Скопление интеллекта (СИ) является вычислительная техника разветки с участием исследования коллективного поведения в децентрализованных системах. Такие системы основаны на население простых людей, взаимодействующих на месте с другом и с окружающей их средой. Несмотря на то, как правило, нет централизованного контроля диктовать поведение отдельных лиц, местных взаимодействий между людьми часто приводят к глобальной структуры выйти. Примерами таких систем, как этого можно найти в природе, в том числе колоний муравьев, птиц, животных, выпас скота, мед пчел, и многое другое. Культурные алгоритм с дифференциальной эволюции населения, предложенных в этом документе. Этот алгоритм использует культурные различными источниками знаний оказывать влияние на изменение оператором дифференциальной эволюции алгоритм, с тем чтобы сократить количество фитнес-функция оценок, необходимых для получения конкурентоспособных результатов. Сравнения предоставляются в отношении трех методов, которые являются репрезентативными для самой современной в области. Результаты, полученные наш алгоритм похожи (по качеству) с результатами, полученными в других подходов, в отношении которых было сравнивать. Однако наш подход требует меньшего числа фитнес-функций оценки, чем другие. |