Кадровый потенциал

Кадровый потенциал - совокупность способностей всех людей, которые заняты в данной организации и решают определенные задачи ...

Транспортная задача

Линейные транспортные задачи составляют особый класс задач линейного программирования. Задача заключается в отыскании такого плана перевозок продукции с m складов в пункт назначения n, который потребовал бы минимальных затрат. Если потребитель j получает единицу продукции (по прямой дороге) со склада i, то возникают издержки Сij. Предполагается, что транспортные расходы пропорциональны перевозимому количеству продукции, т.е. перевозка k единиц продукции вызывает расходы k Сij.

Далее,

где ai-есть количество продукции, находящееся на складе i, и bj - потребность потребителя j.

Замечание.

. Если сумма запасов в пунктах отправления превышает сумму поданных заявок то количество продукции, равное остается на складах. В этом случае мы введем "фиктивного" потребителя +1 с потребностью и положим транспортные расходы pi,n +1 равными 0 для всех i.

. Если сумма поданных заявок превышает наличные запасы

то потребность не может быть покрыта. Эту задачу можно свести к обычной транспортной задаче с правильным балансом, если ввести фиктивный пункт отправления m+1 с запасом

и стоимость перевозок из фиктивного пункта отправления во все пункты назначения принять равным нулю.

.2 Математическая модель транспортной задачи

где xij количество продукции, поставляемое со склада i потребителю j, а Сij издержки (стоимость перевозок со склада i потребителю j).

.3 Опорный план

Решение транспортной задачи начинается с нахождения опорного плана. Для этого существуют различные способы. Например, способ северо-западного угла, способ минимальной стоимости по строке, способ минимальной стоимости по столбцу и способ минимальной стоимости таблицы. Рассмотрим простейший, так называемый способ северо-западного угла. Пояснить его проще всего будет на конкретном примере:

Условия транспортной задачи заданы транспортной таблицей.

Таблица № 1

ПН ПО

В1

В2

В3

В4

В5

Запасы аi

А1

10

8

5

6

9

48

А2

6

7

8

6

5

30

А3

8

7

10

8

7

27

А4

7

5

4

6

8

20

Заявки bj

18

27

42

12

26

125

Будем заполнять таблицу перевозками, постепенно начиная с левой верхней ячейки ("северо-западного угла" таблицы). Будем рассуждать при этом следующим образом. Пункт В1 подал заявку на 18 единиц груза. Удовлетворим эту заявку за счёт запаса 48, имеющегося в пункте А1, и запишем перевозку 18 в клетке (1,1). После этого заявка пункта В1 удовлетворена, а в пункте А1 осталось ещё 30 единиц груза. Удовлетворим за счёт них заявку пункта В2 (27 единиц), запишем 27 в клетке (1,2); оставшиеся 3 единицы пункта А1 назначим пункту В3. В составе заявки пункта В3 остались неудовлетворёнными 39 единиц. Из них 30 покроем за счёт пункта А2, чем его запас будет исчерпан, и ещё 9 возьмём из пункта А3. Из оставшихся 18 единиц пункта А3 12 выделим пункту В4; оставшиеся 6 единиц назначим пункту В5, что вместе со всеми 20 единицами пункта А4 покроет его заявку. На этом распределение запасов закончено; каждый пункт назначения получил груз, согласно своей заявке. Это выражается в том, что сумма перевозок в каждой строке равна соответствующему запасу, а в столбце - заявке.

Перейти на страницу: 1 2 3