Кадровый потенциал

Кадровый потенциал - совокупность способностей всех людей, которые заняты в данной организации и решают определенные задачи ...

Поиск оптимальных условий

Основной целью решения различного рода исследовательских проблем управления, проектирования и планирования является исследование объектов, прогнозирование их поведения, поиск наилучших условий функционирования. Оптимизацией называют процесс выбора наилучшего варианта из всех возможных. Постановка задачи оптимизации предполагает наличие объекта оптимизации. Объект оптимизации должен обладать определенными степенями свободы - управляющими воздействиями, которые позволяют применять его состояние в соответствие с теми или иными требованиями.

В процессе решения задачи оптимизации обычно необходимо найти оптимальные значения некоторых параметров, при которых выходная величина имеет минимум (или максимум). В общем случае задача оптимизации записывается следующим образом:

R( )→ (1)

- критерий оптимальности

Решением этой задачи называется такой (,), при котором R()=(), R()≥R(x) для любого x.

Методы оптимизации - поиска экстремума функции (в практических задачах - критериев оптимальности) при наличии ограничений или без ограничений очень широко используются на практике. Количественная оценка оптимизируемого качества объекта обычно называется критерием оптимальности. Критерий оптимизации y обычно задается. Этот критерий должен удовлетворять следующим основным требованиям: 1) экстремум величины R должен характеризовать наилучшее состояние объекта в выбранном смысле; 2) Критерий должен выражаться количественно. Если критерий не выражается количественно, то можно ввести рейтинговые, бальные, экспертные оценки, которые количественно выражают лучшее или худшее; 3) По возможности критерий оптимальности должен выражаться одним числом, хотя на практике часто его выражают совокупностью чисел, т.е. разными частными критериями.

Решение задачи оптимизации осуществляют с помощью экспериментального поиска. Для этого сначала осуществляют изучение характера поверхности отклика в районе первоначально выбранной точки факторного пространства (с помощью специально спланированных «пробных» опытов). Затем совершают «рабочее» движение в сторону экстремума, причем направление движения определяют по результатам пробных опытов. Такое движение может осуществляться путем ряда этапов, которые могут объединяться в «циклы».

После выхода в район экстремума оптимальную точку можно уточнить одним из двух способов: 1) постановкой дополнительных, особым образом спланированных опытов; 2) получением математической модели второго или более высокого порядка и последующим решением системы уравнений.

В настоящее время существует достаточно большое количество численных методов оптимизации (поиска экстремума функции, критерия оптимальности), классифицируемых по размерности решаемой задачи, способу формирования шага, наличию ограничений.

1.

Обоснование и описание методов оптимизации

Существует достаточно большое количество численных методов оптимизации. Рассмотрим два метода поисковой оптимизации: «Метод Гауса-Зайделя» и «Метод наказанием случайностью». Первый метод относится к многомерной безградиентной оптимизации, а второй метод аналог метода наискорейшего спуска. Эти методы различаются способами постановки пробных опытов и определения направления движения к экстремуму, а также способами организации самого рабочего движения к экстремуму.

Задача надежности отыскания экстремума усложняется, если на объект воздействуют случайные помехи έ. Для повышения надежности результатов применяют специальные методы, например в каждой запланированной точке факторного пространства выполняют по нескольку параллельных опытов. Кроме того, разные поисковые методы в равных условиях обладают различной помехоустойчивостью.